
3/22/2020

1

Chapter # 1
Introduction to
Compiler

Dr. Shaukat Ali

Course Book
 The primary text for

the course is:
Compilers –
Principles,
Techniques and
Tools by Aho, Sethi
and Ullman

 This is also called the
Dragon Book

3/22/2020

2

Why Study Compilers
Reason #1: understand compilers and languages.

 Understand the code structure.
 Understand language semantics.
 Understand relation between source code and generated machine

code.
 Allow to become a better programmer and increase programmer

productivity and increase portability

Reason #2: nice balance of theory and practice.
 Theory:

 Mathematical models: regular expressions, automata, grammars,
graphs.

 Algorithms that use these models.
 Practice:

 Apply theoretical notions to build a real compiler.

Reason #3: programming experience.
 Creating a compiler entails writing a large computer program which

manipulates complex data structures and implement sophisticated
algorithm

 Increasing programming capability

Compilers
 A Compiler is a program (system software) that

reads a program written in one language – the
source language – and translates it into an
equivalent program in another language – the
target language.

 During translation process, the compiler reports
to its user the presence of errors in the source
program.

Compiler
Source

Program
Target

Program

Error
Messages

3/22/2020

3

Compilers
 Source language can be any high level computer programming

language ranging from traditional programming language such as
Fortran, C, Java etc to specialized language that have been written
for a specific area of computer application such as LISP for AI etc.

 Target language may be another programming language (assembly
language) or the machine language of a computer, depending upon
the compiler.

HighHigh--level source codelevel source code

CompilerCompiler

LowLow--level machine codelevel machine code

Compilation Process
 It takes the whole program at a time and either

displays all of the possible errors in the program
or creates an object program.

 The time at which the conversion of a source
program to an object program occurs is called
compile time.

 The object program is executed at run time.

3/22/2020

4

Properties of compilers
 It must generate a correct executable code

 The input program and the output program must
be equivalent

The compiler should preserve the meaning of
the input program

 Output program should run fast

 Compiler itself should be fast i.e., low
compilation time

 Compiler should provide good diagnostics for
programming errors

Properties of compilers
 Compiler should support separate compilation

 Compiler should work well with debuggers

 Compile time should be maximally proportional
to the code size

3/22/2020

5

Interpreter
 Interpreter is a system software that is used for

the translation of high level language programs.

Directly execute the statements of source
program rather than generating object code

 It is different from the compilers in a sense that:
 It translates a program by taking one instruction at a

time and produces the results before taking the next
instruction.

 It can identify only one error at a time.

 It does not produces the object program.

 Needs retranslation

 Makes it slow than compilers by a factor of 10
times

Interpreter

3/22/2020

6

Assembler
 Assembler is a translator (software) that

particularly converts a program written in
assembly language into machine language.

 Assembly language is called low-level language.

Because there is one to one correspondence
between the assembly language statements
and machine language statements.

Symbolic form of the machine language,
makes it easy to translate

Compiler generates assembly language as its
target language and assembler translate it
into object code

Linker
 Separate program often part of operating system

 Collects code in object file(s) into a file that is
directly executable

 Object code produced by a compiler or
assembler --- machine code that has not yet
been linked

 Linker creates executable machine code

Connects an object program to the code of
standard library functions and to resources
supplied by operating system
 For example, memory allocation and input and

output devices etc.

3/22/2020

7

Loader
 The loader reads the reloadable machine code

Alters its addresses by adding the starting
position of main memory block to them and
loads the code into main memory

The Context of a Compiler
 In addition to compiler, several other programs

may be required to create an executable target
program.

A source program may be divided into
modules stored in separate files. The task of
collecting the source program is the
responsibility of another program called
preprocessor.

The target program created by the compiler
may require further processing before it can
be run.

3/22/2020

8

The Context of a Compiler
The compiler creates the assembly code that

is translated by an assembler into machine
code.

The linker together the machine code with
some library routines into the code that
actually run on the machine.

The Context of a Compiler

3/22/2020

9

Analysis and Synthesis Model
 The structure of compiler consists of two parts:

Analysis part

Synthesis part

 Analysis part
 Analysis part breaks the source program into

constituent pieces and imposes a grammatical
structure on them which further uses this structure to
create an intermediate representation of the source
program

 It is also termed as front end of compiler

Analysis and Synthesis Model
 Information about the source program is collected and

stored in a data structure called symbol table

 Synthesis part
 Synthesis part takes the intermediate representation

as input and transforms it to the target program

 It is also termed as back end of compiler

3/22/2020

10

Analysis and Synthesis Model

Analysis PartAnalysis Part

Synthesis PartSynthesis Part

Source Program

Intermediate Representation

Target Program

The Phases of a Compiler

 A compiler operates in phases, each representing
distinct logical operation, each of which transforms the
source program from one representation into another

 A phase is a single module of compiler
 A phase is a program which convert a source

program from one representation/implementation into
another representation/implementation

 A logical activity that transform the source program
from one representation into another representation

 In practice, some of the phases may be grouped
together

3/22/2020

11

The Phases of Compiler
 A compiler consists of six phases:
 Formal phases – characterizes the basic activities of

compiler
 Lexical Analysis.
 Syntax Analysis.
 Semantic Analysis.
 Intermediate Code Generation.
 Code Optimizer.
 Code Generation.

 Informal phases – helps in performing the basic activities
of compiler
 Symbol-Table Management and Error Handling, that

interact with the six phases are also informally
considered as phases

Analysis Portion

Synthesis Portion

The Phases of a Compiler

3/22/2020

12

Lexical Analysis.
 It is also called Linear Analysis or Scanner

 It reads the stream of characters making up the
source program from left-to-right and grouped
into tokens (the sequence of characters having a
collective meaning), meaningful units

 For example, the characters in the assignment
statement:

position = initial + rate * 60

would be read into the following tokens

Lexical Analysis.
 Tokens:

1. The identifier position
2. The assignment symbol =
3. The identifier initial
4. The plus sign +
5. The identifier rate
6. The multiplication sign *
7. The number 60

 Once a token is generated the corresponding entry is
made in the symbol table

 White paces are removed
 The blanks separating the characters of these

tokens would normally be eliminated during lexical
analysis

 Carriage returns are removed (.i.e., \r)

3/22/2020

13

Syntax Analysis
 It is also called Parsing or Hierarchical Analysis

 Parser converts the tokens produced by lexical analyzer
into a tree like representation called parse tree
 It involves grouping of the tokens of the source program

into grammatical phrases using source language grammar

 The parser checks if the expression made by the
tokens is syntactically correct. Similar to performing
grammatical analysis on a sentence in a natural
language

 The grammatical phrases of the source program are
represented by a parse tree/syntax tree
 Syntax tree is a compressed representation of the parse

tree in which the operators appear as interior nodes and
the operands of the operator are the children of the node
for that operator

Syntax Analysis
 The hierarchical structure of a program is expressed by

recursive rules
 For example, the rules for the definition of expression are:

1. Any identifier is an expression
2. Any number is an expression
3. If expression1 and expression2 are expression, then so are

1. expression1 * expression2

2. expression1 + expression2

3. (expression1)
 Thus by rule (1) initial and rate are expressions.
 By rule (2) 60 is an expression
 By rule (3), we can first infer that rate * 60 is an

expression and finally that initial + rate * 60 is an
expression

3/22/2020

14

Syntax Analysis

Example

3/22/2020

15

Semantic Analysis
 The function of the semantic analyzer is to determine the

meaning of the source program.
 Concerned with meanings – checks meaningfulness of the

statements in the source program

 It checks the source program for semantic errors and gathers
type information

 It uses the parse tree/syntax tree produced by the syntax
analysis phase whether the parse tree constructed
follows the rules of language.
 For example, assignment of values is between compatible data

types, and adding string to an integer.

 The semantic analysis performs type checking
 Here the compiler checks that each operator has operands that

are permitted by the source language specification

Semantic Analysis
 Type information is gathered and stored in the symbol

table or in syntax tree for the next phase code
generation

 However, many language specification permit some
operand coercions.
 When a binary arithmetic operator is applied to an integer and

real. The compiler may need to convert an integer to a real.

 Also identify semantic errors
 For example, many programming language definitions require a

compiler to report an error every time a real number is used to
index an array

 The semantic analyzer produces an annotated syntax
tree as an output

3/22/2020

16

Semantic Analysis

Intermediate Code Generation
 After semantic analysis, some compilers

generates an explicit intermediate
representation of the source program

 An intermediate representation is a program for
an abstract machine
 It is in between the high-level language and the

machine language.

 An intermediate representation should have two
important properties:
 It should be easy to produce and understand

 It should be easy to translate into to the target
program – machine code

3/22/2020

17

Intermediate Code Generation
 Intermediate representation can have a variety

of forms and one is the “three-address space”.
 Three-address space is like the assembly language

which consists of a sequence of instructions, each of
which has at most three operands

 Each three-address space has at most one operator
in addition to the assignment

 The instructions should be in the order in which the
compiler has to decide that in which order operations
are to be done

 The multiplication precedes the addition in the source
program.

Intermediate Code Generation
 The compiler must generate a temporary variable to

hold the value computed by each instruction.

 Some “three-address space” instructions have fewer
than three operands.

3/22/2020

18

Code Optimization
 The code optimization phase attempts to improve the

intermediate code, so that faster-running machine code
will result
 To produce more efficient object/target program to

execute faster.
 To efficiently use memory
 To yield better performance

 To remove redundant code without changing the
meaning of program
 Achieved through code transformation while

preserving semantics
 There is a great variation in the amount of code

optimization different compilers perform.
 It is optional - Compiler can be either optimizing

compiler or dirty compiler

Code Optimization
 Optimizing compiler
The compilers, that do the most called

“optimizing compilers”
 A significant fraction of the time of the compiler is

spent on this phase

 Dirty compiler
Do not provide code optimization

 Code optimization can slow down the
compilation process
 Some simple optimization can improve running time of which improve

the running time of target program without slowing compilation process
 Therefore code optimization and compilation time are directly

proportional to each other
 Therefore code optimization and running time are inversely proportional

to each other

3/22/2020

19

Code Optimization - Examples
 Constant Folding

x := 32 becomes x := 64
x := x + 32

 Unreachable Code
goto L2
x := x + 1  unneeded

 Flow of control optimizations
goto L1 becomes goto L2
…
L1: goto L2

 Algebraic Simplification
x := x + 0  unneeded

Code Optimization - Examples
 Dead code

x := 32  where x value is not changed
after statement

y := x + y  y := y + 32

 Reduction in strength
x := x * 2  x := x + x

3/22/2020

20

Code Optimization.

Code Generation
 The final phase of the compiler is the generation

of the target program, consisting of normally
relocatable machine code or assembly code.

 Memory locations are selected for each of the
variable used by the program.

 Generate the target code form the intermediate
code

 Intermediate instructions are each translated
in to the sequence of machine instructions
that perform the same task

Operations are converted into OP-Codes

Registers are loaded with variables Then,.

3/22/2020

21

Code Generation

Symbol Table Management
 Serves as a dictionary for the compiler

 A data structure where a compiler records the identifiers
used in the source program and collect information about
various attributes of each identifier

 A record for each identifier with fields for the attributes
of the identifier.

 The data structure allows us to find the record for
each identifier quickly and to store or retrieve data
from that record quickly.

3/22/2020

22

Symbol Table Management
 Identifier can be either variable name or function name

 In case of variable name, the attributes may provide
information about:
 The type of variable

 The storage allocated or the storage class

 Size

 Its scope (Where in the program it is valid)

 In case of procedure, the attribute could be
 The name.

 The number and types of its argument.

 The method of passing arguments (by value or by reference)

 The type returned

Symbol Table Management
 Lexical analyzer enters the identifiers detected in the

source program into symbol table but cannot determine
the other relevant attributes of the identifier.

 The other phases enter information about identifiers in to
the symbol table and then uses these information in
various ways.

3/22/2020

23

Error Detection and Reporting
 An error is ab abnormal condition in source program

which either stop the compilation or generate undesired
result

 The basic tasks are

 Error detection

 Error handling

 Error reporting

 Error recovery

 Each phase of compiler can encounters errors. However
after detecting an error, a phase must somehow deal
with that error, so that compilation can proceed, allowing
further errors in the source program to be detected.

 A compiler that stops when it finds the first error is not
helpful.

Error Detection and Reporting
 Error detection

 The lexical phase can detect errors where the
characters coming in the input do not form any token
of the language – violate lexical rules of a language

 Syntax analysis phase detects an error when the
token stream violates the structure rules (syntax) of
the language

 Semantic analysis tries to detect constructs that have
the right syntactic structure but no meaning to the
operation involved.

 For example, if we try to add two identifiers, one of
which is the name of the array and the other is the
name of a procedure.

3/22/2020

24

Error Detection and Reporting
 Error handler

Error handler contains a set of routines for
handling error encountered in any phase of
the compiler

Each phase has specific error
 Every phase of compiler will call an appropriate

routine of the error handler as per their
specifications

 Error reporting

Reporting error to the developer

Performed by the error handler

Error Detection and Reporting
 Error recovery

Error recovery is the use of information to
automatically correct an error

An example --- Internal type casing

Difficult and require a lot of knowledge

Not implemented in the compilers

3/22/2020

25

Translation of a statement.

Types of Errors
 Types of error

Lexical error

Syntax error

Semantic error

Logical error

Fatal error

Spurious error

3/22/2020

26

Types of Errors
 Lexical Error

A sequence of characters does not form any
valid token of the language
 Example

 An identifier name begin with letter followed by any
combination of letters and digits

 Misspelling of keywords

 Syntax error

The stream of tokens violates the grammar
rules of a language

Types of Error
Example

 Statement not ending with semicolon (;)

 Expression like S = A + * B

 Unbalanced parenthesis or curly braces

 Semantic Error

Statements not meaningful
 Example

 Adding character with integer

 Indexing an array with a floating value

 Expression like arrayname[1] + function name

 Identifier multiple declaration within the same
scope

3/22/2020

27

Types of Error
 Logical Error

Error in the algorithm of the source program
which would produce undesired output

Compiler cannot detect logical error
 Example

 Infinite loop

 Array index out of bound

 Division by zero

 Fatal Error

Error occur during run-time of a program

Halt the program

Types of Error
 Example

 Accessing invalid memory location

 Code error not handled by exception handling

 Opening connection to a database

 Opening a file from the hard drive

 Operating system handling interrupt

 Spurious Error

Error made by compiler during the error
recovery
 Example

 A function fi () could be converted into if ()

3/22/2020

28

Front End and Back End
 The phases are collected into a front end and a back end

 Similar to the division into analysis and synthesis
parts

 The front end contains of those phases that depends
primarily on the source language and not on the target
machine language
 Contains Lexical analysis, Syntax analysis, Creation

and management of Symbol table, Semantic analysis
and the generation of intermediate code

 Code optimization (if a compiler have) is also part of
the front end part

 Front end also include the error handling that goes
along with each of these phases

Front End and Back End
 The back end includes those phases of the

compiler that depends on the target machine
language

Does not depend on the source language just
like the intermediate language

Code generation is part of the back end

Front
End

Back
End

source
code

IR machine
code

errors

3/22/2020

29

Advantages of Front End and Back End Separation

 To write a new compiler for the same machine,
only the front end of the compiler changes while
the back end remains the same
 For example, a C compiler with front end and back

end. For a FORTRAN compiler only front end will be
needed and C back end will be used

C compiler
FORTRAN
compiler

Front End Front End

Back End

Target
Language

Advantages of Front End and Back End Separation

 To write a compiler for new machine then the
front end of the compiler remain the same and
the back end of the compiler will change

A C compiler ay have more than one back
ends, each for a different machine

C compiler
Front End

Back End Back End

IBM IBM

3/22/2020

30

Advantages of Front End and Back End Separation

 To write a combined front end for multiple
languages and a combined back end to create
target program for different machines

Cousins of Compiler
 Software/programs that are related with compiler

Not specific parts of compiler but to carry out
some functions/processing as that of
compiler

To help compiler by performing operations
like compiler

 Cousins of compiler are

Preprocessor

Assembler

Linker and loader

3/22/2020

31

Cousins of Compiler

Preprocessor
 As the name indicates “pre-process” – to do something

before formally starting the compilation

 A preprocessor is a program that processes its input
data to produce output that is used as input to another
program

 The output is said to be a preprocessed form of the
input data, which is often used by some subsequent
programs like compilers

 The preprocessor is executed before the actual
compilation of code begins, therefore the preprocessor
digests all these directives before any code is generated
by the statements

3/22/2020

32

Preprocessor
 Preprocessor may perform the following

functions

Macro processing

File inclusion

Rational preprocessing

Conditional Compilation

Language extension

Macro Processing
 A macro is a rule or pattern that specifies how a

certain input sequence (often a sequence of
characters) should be mapped to an output
sequence (also often a sequence of characters)
according to a defined procedure

 The mapping process that instantiates
(transforms) a macro into a specific output
sequence is known as macro expansion

 Macro preprocessor deals with

Macro definition

Macro use

3/22/2020

33

Macro Processing
 Macro Definition

To define preprocessor macros we can use
#define construct in C++

 It consists of name of macro and body
forming its definition

 Its format is: #define identifier replacement
 Identifier can be any valid name

 This replacement can be an expression, a statement, a block
or simply anything

 Example

 #define PI 3.14

 #define LIGHT_SPEED 299792458 // Speed of light

 #define circleArea(r) (3.1415*(r)*(r)) //function like macro

Macro Processing
 Macro Use

When the preprocessor encounters this directive, it
replaces any occurrence of identifier in the rest of the
code by replacement

 The preprocessor does not understand C++, it simply
replaces any occurrence of identifier by replacement

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

int table2[TABLE_SIZE];

 After the preprocessor has replaced TABLE_SIZE,
the code becomes equivalent to

int table1[100];

int table2[100];

3/22/2020

34

Example

File Inclusion
 Preprocessor includes header files into the

program text

 When the preprocessor finds an #include
directive it replaces it by the entire content of the
specified file

 There are two ways to specify a file to be
included:

#include "file“

#include <file>

 The only difference between both expressions is
the places (directories) where the compiler is
going to look for the file

3/22/2020

35

File Inclusion
 In the first case where the file name is specified

between double-quotes
 The file is searched first in the same directory that

includes the file containing the directive
 In case that it is not there, the compiler searches the file in

the default directories where it is configured to look for the
standard header files

 If the file name is enclosed between angle-
brackets <>
 The file is searched directly where the compiler is configured to

look for the standard header files

 Therefore, standard header files are usually included in angle-
brackets, while other specific header files are included using
quotes

Relational Preprocessor
 These processors augment older languages with

more modern flow of control and data structuring
facilities.

For example, such a preprocessor might
provide the user with built-in macros for
constructs like while-statements or if-
statements, where none exist in the
programming language itself
 If an old language does not support “if” or “while”,

using relational preprocessor we can include it due
to macro (i.e. #)

3/22/2020

36

Conditional Compilation
 Instruct preprocessor whether to include certain

chuck of code or not – allows programmer to
compile one part of his program leaving the
remaining program un-compiled

 It's similar like a if statement. However, there is
a big difference you need to understand

The if statement is tested during the execution
time to check whether a block of code should
be executed or not whereas, the conditionals
is used to include (or skip) certain chucks of
code in your program before execution

Conditional Compilation
 Uses of Conditional

 Use different code depending on the machine,
operating system

 Compile same source file in two different programs

 To exclude certain code from the program but to keep
it as reference for future purpose

 How to use conditional?
 To use conditional, #ifdef, #if, #defined, #else and

#elseif directives are used

 #ifdef Directive

#ifdef MACRO
conditional codes
#endif

Here, the conditional codes
are included in the program
only if MACRO is defined.

3/22/2020

37

Conditional Compilation
#if, #elif and #else Directive

 The optional #else directive can be used with #if
directive

#if expression
conditional codes
#endif

Here, expression is a expression of
integer type (can be integers, characters,
arithmetic expression, macros and so
on). The conditional codes are included
in the program only if the expression is
evaluated to a non-zero value.

#if expression
conditional codes if expression is non-zero

#else
conditional if expression is 0

#endif

Language Extension
 These processors attempt to add capabilities to

the language by using built-in macros
 For example, the language equal is a database query language

embedded in C

 Statements begging with ## are taken by the preprocessor to be
database access statements unrelated to C and are translated
into procedure calls on routines that perform the database
access

 The behavior of the compiler with respect to
extensions is declared with the #extension
directive:
 #extension extension_name : behavior

 #extension all : behavior

 extension_name is the name of an extension

3/22/2020

38

Assembler
 Typically a modern assembler creates object code by

translating assembly instruction mnemonics into
opcodes, and by resolving symbolic names for memory
locations and other entities

 There are two types of assemblers based on how many
passes through the source are needed to produce the
executable program

One-pass assemblers go through the source code
once and assumes that all symbols will be defined
before any instruction that references them

 Two-pass assemblers create a table with all
symbols and their values in the first pass, then use
the table in a second pass to generate code



Assembler
 The advantage of a one-pass assembler is

speed, which is not as important as it once was
with advances in computer speed and
capabilities

 The advantage of the two-pass assembler is
that symbols can be defined anywhere in the
program source

As a result, the program can be defined in a
more logical and meaningful way

This makes two-pass assembler programs
easier to read and maintain

3/22/2020

39

Linker
 A linker is a program that takes one or more

objects generated by a compiler and combines
them into a single executable program.

 Three tasks:

Searches the program to find library routines
used by program, e.g. printf(), math routines.

Determines the memory locations that code
from each module will occupy and relocates
its instructions by adjusting absolute
references

Resolves references among files Loader

Loader
 A loader is the part of an operating system that

is responsible for loading programs, one of the
essential stages in the process of starting a
program

 Loading a program involves reading the
contents of executable file - the file containing
the program text - into memory, and then
carrying out other required preparatory tasks to
prepare the executable for running

 Once loading is complete, the operating system
starts the program by passing control to the
loaded program code

3/22/2020

40

Loader
 Steps for loaders :

Read executable file's header to determine
the size of text and data segments

Create a new address space for the program

Copies instructions and data into address
space

Copies arguments passed to the program on
the stack

Jumps to a startup routine that copies the
program's arguments from the stack to
registers and calls the program's main routine

The End.

